<table>
<thead>
<tr>
<th>Training Session on Energy Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressors & Compressed Air Systems</td>
</tr>
</tbody>
</table>

Electrical Equipment
Compressors
Training Agenda: Compressor

<table>
<thead>
<tr>
<th>Electrical Equipment/Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Types of compressors</td>
</tr>
<tr>
<td>Assessment of compressors and compressed air systems</td>
</tr>
<tr>
<td>Energy efficiency opportunities</td>
</tr>
</tbody>
</table>

Introduction

Significant Inefficiencies

- Compressors: 5 to > 50,000 hp
- 70 – 90% of compressed air is lost

Approximately 10% gets to the point of use!!
Introduction

Benefits of managed system

• Electricity savings: 20 – 50%
• Maintenance reduced, downtime decreased, production increased and product quality improved
Introduction

Main Components in Compressed Air Systems

- Intake air filters
- Inter-stage coolers
- After coolers
- Air dryers
- Moisture drain traps
- Receivers
Training Agenda: Compressor

<table>
<thead>
<tr>
<th>Electrical Equipment/Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Types of compressors</td>
</tr>
<tr>
<td>Assessment of compressors and compressed air systems</td>
</tr>
<tr>
<td>Energy efficiency opportunities</td>
</tr>
</tbody>
</table>
Two Basic Compressor Types

Types of Compressors

- Positive displacement
 - Reciprocating
 - Rotary
- Dynamic
 - Centrifugal
 - Axial

Types of Compressors

Type of compressor
Types of Compressors

Reciprocating Compressor

- Used for air and refrigerant compression
- Works like a bicycle pump: cylinder volume reduces while pressure increases, with pulsating output
- Many configurations available
- Single acting when using one side of the piston, and double acting when using both sides

![Diagram of a Reciprocating Compressor](image)
Types of Compressors

Rotary Compressor

- Rotors instead of pistons: continuous discharge
- Benefits: low cost, compact, low weight, easy to maintain
- Sizes between 30 – 200 hp
- Types
 - Lobe compressor
 - Screw compressor
 - Rotary vane / Slide vane
Types of Compressors

Centrifugal Compressor

- Rotating impeller transfers energy to move air
- Continuous duty
- Designed oil free
- High volume applications > 12,000 cfm

(King, Julie)
Types of Compressors

Comparison of Compressors

- Efficiency at full, partial and no load
- Noise level
- Size
- Oil carry-over
- Vibration
- Maintenance
- Capacity
- Pressure
Training Agenda: Compressor

<table>
<thead>
<tr>
<th>Electrical Equipment/Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Types of compressors</td>
</tr>
<tr>
<td>Assessment of compressors and compressed air systems</td>
</tr>
<tr>
<td>Energy efficiency opportunities</td>
</tr>
</tbody>
</table>
Assessment of Compressors

Capacity of a Compressor

- Capacity: full rated volume of flow of compressed gas
- Actual flow rate: free air delivery (FAD)
- FAD reduced by ageing, poor maintenance, fouled heat exchanger and altitude
- Energy loss: percentage deviation of FAD capacity
Assessment of Compressors

Simple Capacity Assessment Method

- Isolate compressor and receiver and close receiver outlet
- Empty the receiver and the pipeline from water
- Start the compressor and activate the stopwatch
- Note time taken to attain the normal operational pressure P_2 (in the receiver) from initial pressure P_1
- Calculate the capacity FAD:

$$Q = \frac{P_2 - P_1}{P_0} \times \frac{V}{T} \text{Nm}^3/\text{Minute}$$

- P_2 = Final pressure after filling (kg/cm²a)
- P_1 = Initial pressure (kg/cm²a) after bleeding
- P_0 = Atmospheric pressure (kg/cm²a)
- V = Storage volume in m³ which includes receiver, after cooler and delivery piping
- T = Time take to build up pressure to P_2 in minutes
Assessment of Compressors

Compressor Efficiency

- Most practical: specific power consumption (kW / volume flow rate)
- Other methods
 - Isothermal
 - Volumetric
 - Adiabatic
 - Mechanical
Assessment of Compressors

Compressor Efficiency

Isothermal efficiency

$$\text{Isothermal efficiency} = \frac{\text{Actual measured input power}}{\text{Isothermal power}}$$

$$\text{Isothermal power (kW)} = \frac{P_1 \times Q_1 \times \log_{e} r}{36.7}$$

- P_1 = Absolute intake pressure kg / cm2
- Q_1 = Free air delivered m3 / hr
- r = Pressure ratio P_2/P_1
Assessment of Compressors

Compressor Efficiency

Volumetric efficiency

\[
\text{Volumetric efficiency} = \frac{\text{Free air delivered m}^3/\text{min}}{\text{Compressor displacement}}
\]

Compressor displacement

\[
\text{Compressor displacement} = \pi \times \frac{D^2}{4} \times L \times S \times \chi \times n
\]

- \(D \) = Cylinder bore, meter
- \(L \) = Cylinder stroke, meter
- \(S \) = Compressor speed rpm
- \(\chi \) = 1 for single acting and 2 for double acting cylinders
- \(n \) = No. of cylinders
Assessment of Compressors

Leaks

- Consequences
 - Energy waste: 20 – 30% of output
 - Drop in system pressure
 - Shorter equipment life

- Common leakage areas
 - Couplings, hoses, tubes, fittings
 - Pressure regulators
 - Open condensate traps, shut-off valves
 - Pipe joints, disconnects, thread sealants
Assessment of Compressors

Leak Quantification Method

- Total leakage calculation:

 \[\text{Leakage (\%)} = \left[\frac{T \times 100}{T + t} \right] \]

 - \(T \) = on-load time (minutes)
 - \(t \) = off-load time (minutes)

- Well maintained system: less than 10% leakages
• Shut off compressed air operated equipments
• Run compressor to charge the system to set pressure of operation
• Note the time taken for “Load” and “Unload” cycles
• Calculate quantity of leakage (previous slide)
• If Q is actual free air supplied during trial (m3/min), then:

System leakage (m3/minute) = \(Q \times \frac{T}{(T + t)}\)
Assessment of Compressors

Example

- Compressor capacity (m³/minute) = 35
- Cut in pressure, kg/cm² = 6.8
- Cut out pressure, kg/cm² = 7.5
- Load kW drawn = 188 kW
- Unload kW drawn = 54 kW
- Average ‘Load’ time = 1.5 min
- Average ‘Unload’ time = 10.5 min

Leakage = \(\left[\frac{1.5}{1.5 + 10.5} \right] \times 35 = 4.375 \text{ m}^3/\text{minute} \)
Training Agenda: Compressor

<table>
<thead>
<tr>
<th>Electrical Equipment/Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Types of compressors</td>
</tr>
<tr>
<td>Assessment of compressors and compressed air systems</td>
</tr>
<tr>
<td>Energy efficiency opportunities</td>
</tr>
</tbody>
</table>
Energy Efficiency Opportunities

1. Location
 - Significant influence on energy use

2. Elevation
 - Higher altitude = lower volumetric efficiency

<table>
<thead>
<tr>
<th>Altitude Meters</th>
<th>Barometric Pressure milli bar*</th>
<th>Percentage Relative Volumetric Efficiency Compared with Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At 4 bar</td>
</tr>
<tr>
<td>Sea level</td>
<td>1013</td>
<td>100.0</td>
</tr>
<tr>
<td>500</td>
<td>945</td>
<td>98.7</td>
</tr>
<tr>
<td>1000</td>
<td>894</td>
<td>97.0</td>
</tr>
<tr>
<td>1500</td>
<td>840</td>
<td>95.5</td>
</tr>
<tr>
<td>2000</td>
<td>789</td>
<td>93.9</td>
</tr>
<tr>
<td>2500</td>
<td>737</td>
<td>92.1</td>
</tr>
</tbody>
</table>

* 1 milli bar = 1.01972 x 10^-3 kg/cm^2
3. Air Intake

- Keep intake air free from contaminants, dust or moist
- Keep intake air temperature low

 Every 4 °C rise in inlet air temperature = 1% higher energy consumption
- Keep ambient temperature low when an intake air filter is located at the compressor
Energy Efficiency Opportunities

4. Pressure Drops in Air Filter

- Install filter in cool location or draw air from cool location
- Keep pressure drop across intake air filter to a minimum

Every 250 mm WC pressure drop = 2% higher energy consumption
Energy Efficiency Opportunities

5. Use Inter and After Coolers

- **Inlet air temperature rises at each stage of multi-stage machine**
- **Inter coolers**: heat exchangers that remove heat between stages
- **After coolers**: reduce air temperature after final stage
- **Use water at lower temperature**: reduce power
6. Pressure Settings

- Higher pressure
 - More power by compressors
- Lower volumetric efficiency
- Operating above operating pressures
 - Waste of energy
 - Excessive wear
Energy Efficiency Opportunities

6. Pressure Settings

a. Reducing delivery pressure
Operating a compressor at 120 PSIG instead of 100 PSIG: 10% less energy and reduced leakage rate

b. Compressor modulation by optimum pressure settings
Applicable when different compressors connected

c. Segregating high/low pressure requirements
Pressure reducing valves no longer needed
Energy Efficiency Opportunities

6. Pressure Settings

d. Design for minimum pressure drop in the distribution line

- Pressure drop: reduction in air pressure from the compressor discharge to the point of use
- Pressure drop < 10%
- Pressure drops caused by
 - corrosion
 - inadequate sized piping, couplings hoses
 - choked filter elements
6. Pressure Settings

d. Design for minimum pressure drop in the distribution line

<table>
<thead>
<tr>
<th>Pipe Nominal Bore (mm)</th>
<th>Pressure drop (bar) per 100 meters</th>
<th>Equivalent power losses (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.80</td>
<td>9.5</td>
</tr>
<tr>
<td>50</td>
<td>0.65</td>
<td>3.4</td>
</tr>
<tr>
<td>65</td>
<td>0.22</td>
<td>1.2</td>
</tr>
<tr>
<td>80</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>0.02</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Typical pressure drop in compressed air line for different pipe size (Confederation of Indian Industries)
7. Minimizing Leakage

- Use ultrasonic acoustic detector
- Tighten joints and connections
- Replace faulty equipment

8. Condensate Removal

- Condensate formed as after-cooler reduces discharge air temperature
- Install condensate separator trap to remove condensate
Energy Efficiency Opportunities

| Electrical Equipment/Compressors |
|----------------------------------|---
| 9. Controlled usage |
| • Do not use for low-pressure applications: agitation, combustion air, pneumatic conveying |
| • Use blowers instead |
| 10. Compressor controls |
| • Automatically turns off compressor when not needed |
Energy Efficiency Opportunities

9. Maintenance Practices

- **Lubrication**: Checked regularly
- **Air filters**: Replaced regularly
- **Condensate traps**: Ensure drainage
- **Air dryers**: Inspect and replace filters
Training Session on Energy Equipment

Compressors & Compressed Air Systems

THANK YOU FOR YOUR ATTENTION